业务空间邻接关系
1. 业务空间有所在楼层
2. 业务空间有外轮廓
1. 查出所有有所在楼层, 并且外轮廓不是null的业务空间
2. 根据所在楼层, 业务空间分区来将业务空间分组
3. 计算每个分组内的业务空间的相邻关系
计算相邻算法:
1. 首先判断围成业务空间的线段, 两两空间之间是否有近似平行的线段(线段偏转误差小于1度)
1). 近似平行判断: 首先获取两个线段的斜率, 再计算斜率的反正切(即与x轴的角度, 不过是以pi为单位), 再判断两个角度差的绝对值是否小于1度
2. 如果有近似平行的线段, 判断是否相互有投影在线段上, 有投影在线段上, 则认为是两平行线段有重合部分, 业务空间有相邻的可能性
3. 在判断互相有投影点在对方线段上之后, 判断投影线的长度, 是否小于250mm(墙的最大厚度), 如果小于250mm则认为两空间相邻
create or replace function public.rel_sp2sp1(project_id character varying) returns boolean
as
$$
from relations.src.business_space_adjacent.adjacent import calc_space_adjacent
try:
# 将下面对数据库的操作作为一个事务, 出异常则自动rollback
with plpy.subtransaction():
delete_plan = plpy.prepare("delete from r_spatial_connection where project_id = $1 and sign = 2", ["text"])
delete_plan.execute([project_id])
space_data_plan = plpy.prepare("SELECT id, project_id, floor_id, object_type, bim_location, outline FROM zone_space_base where project_id = $1 and outline is not null and floor_id is not null order by floor_id, object_type", ["text"])
space_data = space_data_plan.execute([project_id])
rel_data = calc_space_adjacent(space_data)
for single_rel in rel_data:
delete_duplicate_plan = plpy.prepare("delete from r_spatial_connection where space_id_one = $1 and space_id_two = $2", ["text", "text"])
delete_duplicate_plan.execute([single_rel['space_id_one'], single_rel['space_id_two']])
insert_plan = plpy.prepare("insert into r_spatial_connection(project_id, location_one, location_two, space_id_one, space_id_two, sign, graph_type, floor_id, zone_type) values($1, $2, $3, $4, $5, 2, 'SpaceNeighborhood', $6, $7)", ["text", "text", "text", "text", "text", "text", "text"])
insert_plan.execute([project_id, single_rel['location_one'], single_rel['location_two'], single_rel['space_id_one'], single_rel['space_id_two'], single_rel['floor_id'], single_rel['zone_type']])
except Exception as e:
plpy.warning(e)
return False
else:
return True
$$
LANGUAGE 'plpython3u' VOLATILE;
select public.rel_sp2sp1('Pj1101050001')
1. 项目id
select public.rel_sp2sp1('Pj1102290002');