// ZlibCodec.cs // ------------------------------------------------------------------ // // Copyright (c) 2009 Dino Chiesa and Microsoft Corporation. // All rights reserved. // // This code module is part of DotNetZip, a zipfile class library. // // ------------------------------------------------------------------ // // This code is licensed under the Microsoft Public License. // See the file License.txt for the license details. // More info on: http://dotnetzip.codeplex.com // // ------------------------------------------------------------------ // // last saved (in emacs): // Time-stamp: <2009-November-03 15:40:51> // // ------------------------------------------------------------------ // // This module defines a Codec for ZLIB compression and // decompression. This code extends code that was based the jzlib // implementation of zlib, but this code is completely novel. The codec // class is new, and encapsulates some behaviors that are new, and some // that were present in other classes in the jzlib code base. In // keeping with the license for jzlib, the copyright to the jzlib code // is included below. // // ------------------------------------------------------------------ // // Copyright (c) 2000,2001,2002,2003 ymnk, JCraft,Inc. All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in // the documentation and/or other materials provided with the distribution. // // 3. The names of the authors may not be used to endorse or promote products // derived from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, // INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND // FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JCRAFT, // INC. OR ANY CONTRIBUTORS TO THIS SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, // OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, // EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // ----------------------------------------------------------------------- // // This program is based on zlib-1.1.3; credit to authors // Jean-loup Gailly(jloup@gzip.org) and Mark Adler(madler@alumni.caltech.edu) // and contributors of zlib. // // ----------------------------------------------------------------------- using System; namespace SharpCompress.Compressors.Deflate { /// /// Encoder and Decoder for ZLIB and DEFLATE (IETF RFC1950 and RFC1951). /// /// /// /// This class compresses and decompresses data according to the Deflate algorithm /// and optionally, the ZLIB format, as documented in RFC 1950 - ZLIB and RFC 1951 - DEFLATE. /// internal sealed class ZlibCodec { /// /// The buffer from which data is taken. /// public byte[] InputBuffer; /// /// An index into the InputBuffer array, indicating where to start reading. /// public int NextIn; /// /// The number of bytes available in the InputBuffer, starting at NextIn. /// /// /// Generally you should set this to InputBuffer.Length before the first Inflate() or Deflate() call. /// The class will update this number as calls to Inflate/Deflate are made. /// public int AvailableBytesIn; /// /// Total number of bytes read so far, through all calls to Inflate()/Deflate(). /// public long TotalBytesIn; /// /// Buffer to store output data. /// public byte[] OutputBuffer; /// /// An index into the OutputBuffer array, indicating where to start writing. /// public int NextOut; /// /// The number of bytes available in the OutputBuffer, starting at NextOut. /// /// /// Generally you should set this to OutputBuffer.Length before the first Inflate() or Deflate() call. /// The class will update this number as calls to Inflate/Deflate are made. /// public int AvailableBytesOut; /// /// Total number of bytes written to the output so far, through all calls to Inflate()/Deflate(). /// public long TotalBytesOut; /// /// used for diagnostics, when something goes wrong! /// public String Message; internal DeflateManager dstate; internal InflateManager istate; internal uint _Adler32; /// /// The compression level to use in this codec. Useful only in compression mode. /// public CompressionLevel CompressLevel = CompressionLevel.Default; /// /// The number of Window Bits to use. /// /// /// This gauges the size of the sliding window, and hence the /// compression effectiveness as well as memory consumption. It's best to just leave this /// setting alone if you don't know what it is. The maximum value is 15 bits, which implies /// a 32k window. /// public int WindowBits = ZlibConstants.WindowBitsDefault; /// /// The compression strategy to use. /// /// /// This is only effective in compression. The theory offered by ZLIB is that different /// strategies could potentially produce significant differences in compression behavior /// for different data sets. Unfortunately I don't have any good recommendations for how /// to set it differently. When I tested changing the strategy I got minimally different /// compression performance. It's best to leave this property alone if you don't have a /// good feel for it. Or, you may want to produce a test harness that runs through the /// different strategy options and evaluates them on different file types. If you do that, /// let me know your results. /// public CompressionStrategy Strategy = CompressionStrategy.Default; /// /// The Adler32 checksum on the data transferred through the codec so far. You probably don't need to look at this. /// public int Adler32 => (int)_Adler32; /// /// Create a ZlibCodec. /// /// /// If you use this default constructor, you will later have to explicitly call /// InitializeInflate() or InitializeDeflate() before using the ZlibCodec to compress /// or decompress. /// public ZlibCodec() { } /// /// Create a ZlibCodec that either compresses or decompresses. /// /// /// Indicates whether the codec should compress (deflate) or decompress (inflate). /// public ZlibCodec(CompressionMode mode) { if (mode == CompressionMode.Compress) { int rc = InitializeDeflate(); if (rc != ZlibConstants.Z_OK) { throw new ZlibException("Cannot initialize for deflate."); } } else if (mode == CompressionMode.Decompress) { int rc = InitializeInflate(); if (rc != ZlibConstants.Z_OK) { throw new ZlibException("Cannot initialize for inflate."); } } else { throw new ZlibException("Invalid ZlibStreamFlavor."); } } /// /// Initialize the inflation state. /// /// /// It is not necessary to call this before using the ZlibCodec to inflate data; /// It is implicitly called when you call the constructor. /// /// Z_OK if everything goes well. public int InitializeInflate() { return InitializeInflate(WindowBits); } /// /// Initialize the inflation state with an explicit flag to /// govern the handling of RFC1950 header bytes. /// /// /// /// By default, the ZLIB header defined in RFC 1950 is expected. If /// you want to read a zlib stream you should specify true for /// expectRfc1950Header. If you have a deflate stream, you will want to specify /// false. It is only necessary to invoke this initializer explicitly if you /// want to specify false. /// /// /// whether to expect an RFC1950 header byte /// pair when reading the stream of data to be inflated. /// /// Z_OK if everything goes well. public int InitializeInflate(bool expectRfc1950Header) { return InitializeInflate(WindowBits, expectRfc1950Header); } /// /// Initialize the ZlibCodec for inflation, with the specified number of window bits. /// /// The number of window bits to use. If you need to ask what that is, /// then you shouldn't be calling this initializer. /// Z_OK if all goes well. public int InitializeInflate(int windowBits) { WindowBits = windowBits; return InitializeInflate(windowBits, true); } /// /// Initialize the inflation state with an explicit flag to govern the handling of /// RFC1950 header bytes. /// /// /// /// If you want to read a zlib stream you should specify true for /// expectRfc1950Header. In this case, the library will expect to find a ZLIB /// header, as defined in RFC /// 1950, in the compressed stream. If you will be reading a DEFLATE or /// GZIP stream, which does not have such a header, you will want to specify /// false. /// /// /// whether to expect an RFC1950 header byte pair when reading /// the stream of data to be inflated. /// The number of window bits to use. If you need to ask what that is, /// then you shouldn't be calling this initializer. /// Z_OK if everything goes well. public int InitializeInflate(int windowBits, bool expectRfc1950Header) { WindowBits = windowBits; if (dstate != null) { throw new ZlibException("You may not call InitializeInflate() after calling InitializeDeflate()."); } istate = new InflateManager(expectRfc1950Header); return istate.Initialize(this, windowBits); } /// /// Inflate the data in the InputBuffer, placing the result in the OutputBuffer. /// /// /// You must have set InputBuffer and OutputBuffer, NextIn and NextOut, and AvailableBytesIn and /// AvailableBytesOut before calling this method. /// /// /// /// private void InflateBuffer() /// { /// int bufferSize = 1024; /// byte[] buffer = new byte[bufferSize]; /// ZlibCodec decompressor = new ZlibCodec(); /// /// Console.WriteLine("\n============================================"); /// Console.WriteLine("Size of Buffer to Inflate: {0} bytes.", CompressedBytes.Length); /// MemoryStream ms = new MemoryStream(DecompressedBytes); /// /// int rc = decompressor.InitializeInflate(); /// /// decompressor.InputBuffer = CompressedBytes; /// decompressor.NextIn = 0; /// decompressor.AvailableBytesIn = CompressedBytes.Length; /// /// decompressor.OutputBuffer = buffer; /// /// // pass 1: inflate /// do /// { /// decompressor.NextOut = 0; /// decompressor.AvailableBytesOut = buffer.Length; /// rc = decompressor.Inflate(FlushType.None); /// /// if (rc != ZlibConstants.Z_OK && rc != ZlibConstants.Z_STREAM_END) /// throw new Exception("inflating: " + decompressor.Message); /// /// ms.Write(decompressor.OutputBuffer, 0, buffer.Length - decompressor.AvailableBytesOut); /// } /// while (decompressor.AvailableBytesIn > 0 || decompressor.AvailableBytesOut == 0); /// /// // pass 2: finish and flush /// do /// { /// decompressor.NextOut = 0; /// decompressor.AvailableBytesOut = buffer.Length; /// rc = decompressor.Inflate(FlushType.Finish); /// /// if (rc != ZlibConstants.Z_STREAM_END && rc != ZlibConstants.Z_OK) /// throw new Exception("inflating: " + decompressor.Message); /// /// if (buffer.Length - decompressor.AvailableBytesOut > 0) /// ms.Write(buffer, 0, buffer.Length - decompressor.AvailableBytesOut); /// } /// while (decompressor.AvailableBytesIn > 0 || decompressor.AvailableBytesOut == 0); /// /// decompressor.EndInflate(); /// } /// /// /// /// The flush to use when inflating. /// Z_OK if everything goes well. public int Inflate(FlushType flush) { if (istate == null) { throw new ZlibException("No Inflate State!"); } return istate.Inflate(flush); } /// /// Ends an inflation session. /// /// /// Call this after successively calling Inflate(). This will cause all buffers to be flushed. /// After calling this you cannot call Inflate() without a intervening call to one of the /// InitializeInflate() overloads. /// /// Z_OK if everything goes well. public int EndInflate() { if (istate == null) { throw new ZlibException("No Inflate State!"); } int ret = istate.End(); istate = null; return ret; } /// /// I don't know what this does! /// /// Z_OK if everything goes well. public int SyncInflate() { if (istate == null) { throw new ZlibException("No Inflate State!"); } return istate.Sync(); } /// /// Initialize the ZlibCodec for deflation operation. /// /// /// The codec will use the MAX window bits and the default level of compression. /// /// /// /// int bufferSize = 40000; /// byte[] CompressedBytes = new byte[bufferSize]; /// byte[] DecompressedBytes = new byte[bufferSize]; /// /// ZlibCodec compressor = new ZlibCodec(); /// /// compressor.InitializeDeflate(CompressionLevel.Default); /// /// compressor.InputBuffer = System.Text.ASCIIEncoding.ASCII.GetBytes(TextToCompress); /// compressor.NextIn = 0; /// compressor.AvailableBytesIn = compressor.InputBuffer.Length; /// /// compressor.OutputBuffer = CompressedBytes; /// compressor.NextOut = 0; /// compressor.AvailableBytesOut = CompressedBytes.Length; /// /// while (compressor.TotalBytesIn != TextToCompress.Length && compressor.TotalBytesOut < bufferSize) /// { /// compressor.Deflate(FlushType.None); /// } /// /// while (true) /// { /// int rc= compressor.Deflate(FlushType.Finish); /// if (rc == ZlibConstants.Z_STREAM_END) break; /// } /// /// compressor.EndDeflate(); /// /// /// /// Z_OK if all goes well. You generally don't need to check the return code. public int InitializeDeflate() { return _InternalInitializeDeflate(true); } /// /// Initialize the ZlibCodec for deflation operation, using the specified CompressionLevel. /// /// /// The codec will use the maximum window bits (15) and the specified /// CompressionLevel. It will emit a ZLIB stream as it compresses. /// /// The compression level for the codec. /// Z_OK if all goes well. public int InitializeDeflate(CompressionLevel level) { CompressLevel = level; return _InternalInitializeDeflate(true); } /// /// Initialize the ZlibCodec for deflation operation, using the specified CompressionLevel, /// and the explicit flag governing whether to emit an RFC1950 header byte pair. /// /// /// The codec will use the maximum window bits (15) and the specified CompressionLevel. /// If you want to generate a zlib stream, you should specify true for /// wantRfc1950Header. In this case, the library will emit a ZLIB /// header, as defined in RFC /// 1950, in the compressed stream. /// /// The compression level for the codec. /// whether to emit an initial RFC1950 byte pair in the compressed stream. /// Z_OK if all goes well. public int InitializeDeflate(CompressionLevel level, bool wantRfc1950Header) { CompressLevel = level; return _InternalInitializeDeflate(wantRfc1950Header); } /// /// Initialize the ZlibCodec for deflation operation, using the specified CompressionLevel, /// and the specified number of window bits. /// /// /// The codec will use the specified number of window bits and the specified CompressionLevel. /// /// The compression level for the codec. /// the number of window bits to use. If you don't know what this means, don't use this method. /// Z_OK if all goes well. public int InitializeDeflate(CompressionLevel level, int bits) { CompressLevel = level; WindowBits = bits; return _InternalInitializeDeflate(true); } /// /// Initialize the ZlibCodec for deflation operation, using the specified /// CompressionLevel, the specified number of window bits, and the explicit flag /// governing whether to emit an RFC1950 header byte pair. /// /// /// The compression level for the codec. /// whether to emit an initial RFC1950 byte pair in the compressed stream. /// the number of window bits to use. If you don't know what this means, don't use this method. /// Z_OK if all goes well. public int InitializeDeflate(CompressionLevel level, int bits, bool wantRfc1950Header) { CompressLevel = level; WindowBits = bits; return _InternalInitializeDeflate(wantRfc1950Header); } private int _InternalInitializeDeflate(bool wantRfc1950Header) { if (istate != null) { throw new ZlibException("You may not call InitializeDeflate() after calling InitializeInflate()."); } dstate = new DeflateManager(); dstate.WantRfc1950HeaderBytes = wantRfc1950Header; return dstate.Initialize(this, CompressLevel, WindowBits, Strategy); } /// /// Deflate one batch of data. /// /// /// You must have set InputBuffer and OutputBuffer before calling this method. /// /// /// /// private void DeflateBuffer(CompressionLevel level) /// { /// int bufferSize = 1024; /// byte[] buffer = new byte[bufferSize]; /// ZlibCodec compressor = new ZlibCodec(); /// /// Console.WriteLine("\n============================================"); /// Console.WriteLine("Size of Buffer to Deflate: {0} bytes.", UncompressedBytes.Length); /// MemoryStream ms = new MemoryStream(); /// /// int rc = compressor.InitializeDeflate(level); /// /// compressor.InputBuffer = UncompressedBytes; /// compressor.NextIn = 0; /// compressor.AvailableBytesIn = UncompressedBytes.Length; /// /// compressor.OutputBuffer = buffer; /// /// // pass 1: deflate /// do /// { /// compressor.NextOut = 0; /// compressor.AvailableBytesOut = buffer.Length; /// rc = compressor.Deflate(FlushType.None); /// /// if (rc != ZlibConstants.Z_OK && rc != ZlibConstants.Z_STREAM_END) /// throw new Exception("deflating: " + compressor.Message); /// /// ms.Write(compressor.OutputBuffer, 0, buffer.Length - compressor.AvailableBytesOut); /// } /// while (compressor.AvailableBytesIn > 0 || compressor.AvailableBytesOut == 0); /// /// // pass 2: finish and flush /// do /// { /// compressor.NextOut = 0; /// compressor.AvailableBytesOut = buffer.Length; /// rc = compressor.Deflate(FlushType.Finish); /// /// if (rc != ZlibConstants.Z_STREAM_END && rc != ZlibConstants.Z_OK) /// throw new Exception("deflating: " + compressor.Message); /// /// if (buffer.Length - compressor.AvailableBytesOut > 0) /// ms.Write(buffer, 0, buffer.Length - compressor.AvailableBytesOut); /// } /// while (compressor.AvailableBytesIn > 0 || compressor.AvailableBytesOut == 0); /// /// compressor.EndDeflate(); /// /// ms.Seek(0, SeekOrigin.Begin); /// CompressedBytes = new byte[compressor.TotalBytesOut]; /// ms.Read(CompressedBytes, 0, CompressedBytes.Length); /// } /// /// /// whether to flush all data as you deflate. Generally you will want to /// use Z_NO_FLUSH here, in a series of calls to Deflate(), and then call EndDeflate() to /// flush everything. /// /// Z_OK if all goes well. public int Deflate(FlushType flush) { if (dstate == null) { throw new ZlibException("No Deflate State!"); } return dstate.Deflate(flush); } /// /// End a deflation session. /// /// /// Call this after making a series of one or more calls to Deflate(). All buffers are flushed. /// /// Z_OK if all goes well. public int EndDeflate() { if (dstate == null) { throw new ZlibException("No Deflate State!"); } // TODO: dinoch Tue, 03 Nov 2009 15:39 (test this) //int ret = dstate.End(); dstate = null; return ZlibConstants.Z_OK; //ret; } /// /// Reset a codec for another deflation session. /// /// /// Call this to reset the deflation state. For example if a thread is deflating /// non-consecutive blocks, you can call Reset() after the Deflate(Sync) of the first /// block and before the next Deflate(None) of the second block. /// /// Z_OK if all goes well. public void ResetDeflate() { if (dstate == null) { throw new ZlibException("No Deflate State!"); } dstate.Reset(); } /// /// Set the CompressionStrategy and CompressionLevel for a deflation session. /// /// the level of compression to use. /// the strategy to use for compression. /// Z_OK if all goes well. public int SetDeflateParams(CompressionLevel level, CompressionStrategy strategy) { if (dstate == null) { throw new ZlibException("No Deflate State!"); } return dstate.SetParams(level, strategy); } /// /// Set the dictionary to be used for either Inflation or Deflation. /// /// The dictionary bytes to use. /// Z_OK if all goes well. public int SetDictionary(byte[] dictionary) { if (istate != null) { return istate.SetDictionary(dictionary); } if (dstate != null) { return dstate.SetDictionary(dictionary); } throw new ZlibException("No Inflate or Deflate state!"); } // Flush as much pending output as possible. All deflate() output goes // through this function so some applications may wish to modify it // to avoid allocating a large strm->next_out buffer and copying into it. // (See also read_buf()). internal void flush_pending() { int len = dstate.pendingCount; if (len > AvailableBytesOut) { len = AvailableBytesOut; } if (len == 0) { return; } if (dstate.pending.Length <= dstate.nextPending || OutputBuffer.Length <= NextOut || dstate.pending.Length < (dstate.nextPending + len) || OutputBuffer.Length < (NextOut + len)) { throw new ZlibException(String.Format("Invalid State. (pending.Length={0}, pendingCount={1})", dstate.pending.Length, dstate.pendingCount)); } Array.Copy(dstate.pending, dstate.nextPending, OutputBuffer, NextOut, len); NextOut += len; dstate.nextPending += len; TotalBytesOut += len; AvailableBytesOut -= len; dstate.pendingCount -= len; if (dstate.pendingCount == 0) { dstate.nextPending = 0; } } // Read a new buffer from the current input stream, update the adler32 // and total number of bytes read. All deflate() input goes through // this function so some applications may wish to modify it to avoid // allocating a large strm->next_in buffer and copying from it. // (See also flush_pending()). internal int read_buf(byte[] buf, int start, int size) { int len = AvailableBytesIn; if (len > size) { len = size; } if (len == 0) { return 0; } AvailableBytesIn -= len; if (dstate.WantRfc1950HeaderBytes) { _Adler32 = Adler.Adler32(_Adler32, InputBuffer, NextIn, len); } Array.Copy(InputBuffer, NextIn, buf, start, len); NextIn += len; TotalBytesIn += len; return len; } } }