// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.

using System.Diagnostics;
using System.IO;

namespace SharpCompress.Compressors.Deflate64
{
    // Strictly speaking this class is not a HuffmanTree, this class is
    // a lookup table combined with a HuffmanTree. The idea is to speed up
    // the lookup for short symbols (they should appear more frequently ideally.)
    // However we don't want to create a huge table since it might take longer to
    // build the table than decoding (Deflate usually generates new tables frequently.)
    //
    // Jean-loup Gailly and Mark Adler gave a very good explanation about this.
    // The full text (algorithm.txt) can be found inside
    // ftp://ftp.uu.net/pub/archiving/zip/zlib/zlib.zip.
    //
    // Following paper explains decoding in details:
    //   Hirschberg and Lelewer, "Efficient decoding of prefix codes,"
    //   Comm. ACM, 33,4, April 1990, pp. 449-459.
    //

    internal sealed class HuffmanTree
    {
        internal const int MAX_LITERAL_TREE_ELEMENTS = 288;
        internal const int MAX_DIST_TREE_ELEMENTS = 32;
        internal const int END_OF_BLOCK_CODE = 256;
        internal const int NUMBER_OF_CODE_LENGTH_TREE_ELEMENTS = 19;

        private readonly int _tableBits;
        private readonly short[] _table;
        private readonly short[] _left;
        private readonly short[] _right;
        private readonly byte[] _codeLengthArray;
#if DEBUG
        private uint[] _codeArrayDebug;
#endif

        private readonly int _tableMask;

        // huffman tree for static block
        public static HuffmanTree StaticLiteralLengthTree { get; } = new HuffmanTree(GetStaticLiteralTreeLength());

        public static HuffmanTree StaticDistanceTree { get; } = new HuffmanTree(GetStaticDistanceTreeLength());

        public HuffmanTree(byte[] codeLengths)
        {
            Debug.Assert(
                codeLengths.Length == MAX_LITERAL_TREE_ELEMENTS ||
                codeLengths.Length == MAX_DIST_TREE_ELEMENTS ||
                codeLengths.Length == NUMBER_OF_CODE_LENGTH_TREE_ELEMENTS,
                "we only expect three kinds of Length here");
            _codeLengthArray = codeLengths;

            if (_codeLengthArray.Length == MAX_LITERAL_TREE_ELEMENTS)
            {
                // bits for Literal/Length tree table
                _tableBits = 9;
            }
            else
            {
                // bits for distance tree table and code length tree table
                _tableBits = 7;
            }
            _tableMask = (1 << _tableBits) - 1;

            _table = new short[1 << _tableBits];

            // I need to find proof that left and right array will always be
            // enough. I think they are.
            _left = new short[2 * _codeLengthArray.Length];
            _right = new short[2 * _codeLengthArray.Length];

            CreateTable();
        }

        // Generate the array contains huffman codes lengths for static huffman tree.
        // The data is in RFC 1951.
        private static byte[] GetStaticLiteralTreeLength()
        {
            byte[] literalTreeLength = new byte[MAX_LITERAL_TREE_ELEMENTS];
            for (int i = 0; i <= 143; i++)
                literalTreeLength[i] = 8;

            for (int i = 144; i <= 255; i++)
                literalTreeLength[i] = 9;

            for (int i = 256; i <= 279; i++)
                literalTreeLength[i] = 7;

            for (int i = 280; i <= 287; i++)
                literalTreeLength[i] = 8;

            return literalTreeLength;
        }

        private static byte[] GetStaticDistanceTreeLength()
        {
            byte[] staticDistanceTreeLength = new byte[MAX_DIST_TREE_ELEMENTS];
            for (int i = 0; i < MAX_DIST_TREE_ELEMENTS; i++)
            {
                staticDistanceTreeLength[i] = 5;
            }
            return staticDistanceTreeLength;
        }

        // Calculate the huffman code for each character based on the code length for each character.
        // This algorithm is described in standard RFC 1951
        private uint[] CalculateHuffmanCode()
        {
            uint[] bitLengthCount = new uint[17];
            foreach (int codeLength in _codeLengthArray)
            {
                bitLengthCount[codeLength]++;
            }
            bitLengthCount[0] = 0;  // clear count for length 0

            uint[] nextCode = new uint[17];
            uint tempCode = 0;
            for (int bits = 1; bits <= 16; bits++)
            {
                tempCode = (tempCode + bitLengthCount[bits - 1]) << 1;
                nextCode[bits] = tempCode;
            }

            uint[] code = new uint[MAX_LITERAL_TREE_ELEMENTS];
            for (int i = 0; i < _codeLengthArray.Length; i++)
            {
                int len = _codeLengthArray[i];

                if (len > 0)
                {
                    code[i] = FastEncoderStatics.BitReverse(nextCode[len], len);
                    nextCode[len]++;
                }
            }
            return code;
        }

        private void CreateTable()
        {
            uint[] codeArray = CalculateHuffmanCode();
#if DEBUG
            _codeArrayDebug = codeArray;
#endif

            short avail = (short)_codeLengthArray.Length;

            for (int ch = 0; ch < _codeLengthArray.Length; ch++)
            {
                // length of this code
                int len = _codeLengthArray[ch];
                if (len > 0)
                {
                    // start value (bit reversed)
                    int start = (int)codeArray[ch];

                    if (len <= _tableBits)
                    {
                        // If a particular symbol is shorter than nine bits,
                        // then that symbol's translation is duplicated
                        // in all those entries that start with that symbol's bits.
                        // For example, if the symbol is four bits, then it's duplicated
                        // 32 times in a nine-bit table. If a symbol is nine bits long,
                        // it appears in the table once.
                        //
                        // Make sure that in the loop below, code is always
                        // less than table_size.
                        //
                        // On last iteration we store at array index:
                        //    initial_start_at + (locs-1)*increment
                        //  = initial_start_at + locs*increment - increment
                        //  = initial_start_at + (1 << tableBits) - increment
                        //  = initial_start_at + table_size - increment
                        //
                        // Therefore we must ensure:
                        //     initial_start_at + table_size - increment < table_size
                        // or: initial_start_at < increment
                        //
                        int increment = 1 << len;
                        if (start >= increment)
                        {
                            throw new InvalidDataException("Deflate64: invalid Huffman data");
                        }

                        // Note the bits in the table are reverted.
                        int locs = 1 << (_tableBits - len);
                        for (int j = 0; j < locs; j++)
                        {
                            _table[start] = (short)ch;
                            start += increment;
                        }
                    }
                    else
                    {
                        // For any code which has length longer than num_elements,
                        // build a binary tree.

                        int overflowBits = len - _tableBits; // the nodes we need to respent the data.
                        int codeBitMask = 1 << _tableBits; // mask to get current bit (the bits can't fit in the table)

                        // the left, right table is used to repesent the
                        // the rest bits. When we got the first part (number bits.) and look at
                        // tbe table, we will need to follow the tree to find the real character.
                        // This is in place to avoid bloating the table if there are
                        // a few ones with long code.
                        int index = start & ((1 << _tableBits) - 1);
                        short[] array = _table;

                        do
                        {
                            short value = array[index];

                            if (value == 0)
                            {
                                // set up next pointer if this node is not used before.
                                array[index] = (short)-avail; // use next available slot.
                                value = (short)-avail;
                                avail++;
                            }

                            if (value > 0)
                            {
                                // prevent an IndexOutOfRangeException from array[index]
                                throw new InvalidDataException("Deflate64: invalid Huffman data");
                            }

                            Debug.Assert(value < 0, "CreateTable: Only negative numbers are used for tree pointers!");

                            if ((start & codeBitMask) == 0)
                            {
                                // if current bit is 0, go change the left array
                                array = _left;
                            }
                            else
                            {
                                // if current bit is 1, set value in the right array
                                array = _right;
                            }
                            index = -value; // go to next node

                            codeBitMask <<= 1;
                            overflowBits--;
                        } while (overflowBits != 0);

                        array[index] = (short)ch;
                    }
                }
            }
        }

        //
        // This function will try to get enough bits from input and
        // try to decode the bits.
        // If there are no enought bits in the input, this function will return -1.
        //
        public int GetNextSymbol(InputBuffer input)
        {
            // Try to load 16 bits into input buffer if possible and get the bitBuffer value.
            // If there aren't 16 bits available we will return all we have in the
            // input buffer.
            uint bitBuffer = input.TryLoad16Bits();
            if (input.AvailableBits == 0)
            {    // running out of input.
                return -1;
            }

            // decode an element
            int symbol = _table[bitBuffer & _tableMask];
            if (symbol < 0)
            {       //  this will be the start of the binary tree
                // navigate the tree
                uint mask = (uint)1 << _tableBits;
                do
                {
                    symbol = -symbol;
                    if ((bitBuffer & mask) == 0)
                        symbol = _left[symbol];
                    else
                        symbol = _right[symbol];
                    mask <<= 1;
                } while (symbol < 0);
            }

            int codeLength = _codeLengthArray[symbol];

            // huffman code lengths must be at least 1 bit long
            if (codeLength <= 0)
            {
                throw new InvalidDataException("Deflate64: invalid Huffman data");
            }

            //
            // If this code is longer than the # bits we had in the bit buffer (i.e.
            // we read only part of the code), we can hit the entry in the table or the tree
            // for another symbol. However the length of another symbol will not match the
            // available bits count.
            if (codeLength > input.AvailableBits)
            {
                // We already tried to load 16 bits and maximum length is 15,
                // so this means we are running out of input.
                return -1;
            }

            input.SkipBits(codeLength);
            return symbol;
        }
    }
}