// Crc32.cs // ------------------------------------------------------------------ // // Copyright (c) 2006-2009 Dino Chiesa and Microsoft Corporation. // All rights reserved. // // This code module is part of DotNetZip, a zipfile class library. // // ------------------------------------------------------------------ // // This code is licensed under the Microsoft Public License. // See the file License.txt for the license details. // More info on: http://dotnetzip.codeplex.com // // ------------------------------------------------------------------ // // last saved (in emacs): // Time-stamp: <2010-January-16 13:16:27> // // ------------------------------------------------------------------ // // Implements the CRC algorithm, which is used in zip files. The zip format calls for // the zipfile to contain a CRC for the unencrypted byte stream of each file. // // It is based on example source code published at // http://www.vbaccelerator.com/home/net/code/libraries/CRC32/Crc32_zip_CRC32_CRC32_cs.asp // // This implementation adds a tweak of that code for use within zip creation. While // computing the CRC we also compress the byte stream, in the same read loop. This // avoids the need to read through the uncompressed stream twice - once to compute CRC // and another time to compress. // // ------------------------------------------------------------------ using System; using System.IO; namespace SharpCompress.Compressors.Deflate { /// /// Calculates a 32bit Cyclic Redundancy Checksum (CRC) using the same polynomial /// used by Zip. This type is used internally by DotNetZip; it is generally not used /// directly by applications wishing to create, read, or manipulate zip archive /// files. /// internal class CRC32 { private const int BUFFER_SIZE = 8192; private static readonly UInt32[] crc32Table; private UInt32 runningCrc32Result = 0xFFFFFFFF; static CRC32() { unchecked { // PKZip specifies CRC32 with a polynomial of 0xEDB88320; // This is also the CRC-32 polynomial used bby Ethernet, FDDI, // bzip2, gzip, and others. // Often the polynomial is shown reversed as 0x04C11DB7. // For more details, see http://en.wikipedia.org/wiki/Cyclic_redundancy_check UInt32 dwPolynomial = 0xEDB88320; UInt32 i, j; crc32Table = new UInt32[256]; UInt32 dwCrc; for (i = 0; i < 256; i++) { dwCrc = i; for (j = 8; j > 0; j--) { if ((dwCrc & 1) == 1) { dwCrc = (dwCrc >> 1) ^ dwPolynomial; } else { dwCrc >>= 1; } } crc32Table[i] = dwCrc; } } } /// /// indicates the total number of bytes read on the CRC stream. /// This is used when writing the ZipDirEntry when compressing files. /// public Int64 TotalBytesRead { get; private set; } /// /// Indicates the current CRC for all blocks slurped in. /// public Int32 Crc32Result => unchecked((Int32)(~runningCrc32Result)); /// /// Returns the CRC32 for the specified stream. /// /// The stream over which to calculate the CRC32 /// the CRC32 calculation public UInt32 GetCrc32(Stream input) { return GetCrc32AndCopy(input, null); } /// /// Returns the CRC32 for the specified stream, and writes the input into the /// output stream. /// /// The stream over which to calculate the CRC32 /// The stream into which to deflate the input /// the CRC32 calculation public UInt32 GetCrc32AndCopy(Stream input, Stream output) { if (input == null) { throw new ZlibException("The input stream must not be null."); } unchecked { //UInt32 crc32Result; //crc32Result = 0xFFFFFFFF; var buffer = new byte[BUFFER_SIZE]; int readSize = BUFFER_SIZE; TotalBytesRead = 0; int count = input.Read(buffer, 0, readSize); if (output != null) { output.Write(buffer, 0, count); } TotalBytesRead += count; while (count > 0) { SlurpBlock(buffer, 0, count); count = input.Read(buffer, 0, readSize); if (output != null) { output.Write(buffer, 0, count); } TotalBytesRead += count; } return ~runningCrc32Result; } } /// /// Get the CRC32 for the given (word,byte) combo. This is a computation /// defined by PKzip. /// /// The word to start with. /// The byte to combine it with. /// The CRC-ized result. public Int32 ComputeCrc32(Int32 W, byte B) { return _InternalComputeCrc32((UInt32)W, B); } internal Int32 _InternalComputeCrc32(UInt32 W, byte B) { return (Int32)(crc32Table[(W ^ B) & 0xFF] ^ (W >> 8)); } /// /// Update the value for the running CRC32 using the given block of bytes. /// This is useful when using the CRC32() class in a Stream. /// /// block of bytes to slurp /// starting point in the block /// how many bytes within the block to slurp public void SlurpBlock(byte[] block, int offset, int count) { if (block == null) { throw new ZlibException("The data buffer must not be null."); } for (int i = 0; i < count; i++) { int x = offset + i; runningCrc32Result = ((runningCrc32Result) >> 8) ^ crc32Table[(block[x]) ^ ((runningCrc32Result) & 0x000000FF)]; } TotalBytesRead += count; } // pre-initialize the crc table for speed of lookup. private uint gf2_matrix_times(uint[] matrix, uint vec) { uint sum = 0; int i = 0; while (vec != 0) { if ((vec & 0x01) == 0x01) { sum ^= matrix[i]; } vec >>= 1; i++; } return sum; } private void gf2_matrix_square(uint[] square, uint[] mat) { for (int i = 0; i < 32; i++) { square[i] = gf2_matrix_times(mat, mat[i]); } } /// /// Combines the given CRC32 value with the current running total. /// /// /// This is useful when using a divide-and-conquer approach to calculating a CRC. /// Multiple threads can each calculate a CRC32 on a segment of the data, and then /// combine the individual CRC32 values at the end. /// /// the crc value to be combined with this one /// the length of data the CRC value was calculated on public void Combine(int crc, int length) { var even = new uint[32]; // even-power-of-two zeros operator var odd = new uint[32]; // odd-power-of-two zeros operator if (length == 0) { return; } uint crc1 = ~runningCrc32Result; var crc2 = (uint)crc; // put operator for one zero bit in odd odd[0] = 0xEDB88320; // the CRC-32 polynomial uint row = 1; for (int i = 1; i < 32; i++) { odd[i] = row; row <<= 1; } // put operator for two zero bits in even gf2_matrix_square(even, odd); // put operator for four zero bits in odd gf2_matrix_square(odd, even); var len2 = (uint)length; // apply len2 zeros to crc1 (first square will put the operator for one // zero byte, eight zero bits, in even) do { // apply zeros operator for this bit of len2 gf2_matrix_square(even, odd); if ((len2 & 1) == 1) { crc1 = gf2_matrix_times(even, crc1); } len2 >>= 1; if (len2 == 0) { break; } // another iteration of the loop with odd and even swapped gf2_matrix_square(odd, even); if ((len2 & 1) == 1) { crc1 = gf2_matrix_times(odd, crc1); } len2 >>= 1; } while (len2 != 0); crc1 ^= crc2; runningCrc32Result = ~crc1; //return (int) crc1; } // private member vars } }