description.md 6.1 KB

IOT数据现状

1.静态非IOT数据接口

BDTP-数据服务

2.BDTP-数据服务(物理世界)与IOT数据如何关联?

BDTP-数据服务中的对象数据如下:

{
    "id": "Eq32060500018c5dd28e0fb1470db61ed3de66a580c2",
    "classCode": "WSDWPP",
    "projectId": "Pj3206050001",
    "grouping": 1,
    "objType": "equipment",
    "valid": 1,
    "name": "生活给水水泵-VJEY2",
    "localId": "Pump02",
    "localName": "2号生活给水水泵",
    "createTime": 1630928465000,
    "createApp": "datacenter",
    "updateTime": 1631066318000,
    "updateApp": "datacenter",
    "virtualInfoCodes": [],
    "modeControl": "1",
    "bimId": "Pj32060500017f8cd1a80eb411ec986e1f9988da50f8F6:1264008",
    "bimLocation": "-107816.2,-61683.94,22758.0",
    "runStatus": "2004-907",
    "pipePressure": "2004-904",
    "pumpTemperature": "2004-903",
    "faultStatus": "2004-906"
}

其中下面四个信息点(对象属性)是动态信息点,其他信息点是静态信息点;

动态信息点,需要根据一个唯一标识去IOT服务获取数据,目前使用的唯一标识是表号-功能,同一个项目下,表号-功能号是唯一 的,所有动态信息点中保存的数据格式是表号-功能号。

"runStatus": "2004-907",
"pipePressure": "2004-904",
"pumpTemperature": "2004-903",
"faultStatus": "2004-906"

目前,物联网、工业互联网、车联网等智能互联技术在各个行业场景下快速普及应用,导致联网传感器、智能设备数量急剧增加,随之而来的海量时序监控数据存储、处理问题,也为时序数据库高效压缩、存储数据能力、查询分析提出了更高的要求。

时序数据(Time Series)

时序数据指数据元组根据时间戳(ti)升序排列的数据集合,可以被划分为:

1、单变量时序(Univariate Time Series,UTS):每次采集的数据元组集合为单个实数变量。

2、多变量时序(Multivariate Time Series ,MTS):每次采集的数据元组集合由多个实数序列组成,每个组成部分对映时序一个特征。

用数学范式表达时序可以被定义为:

640

示例:

... time data ...
... 2000­10­10 00:10:03 1005.00 ...
... 2000­10­10 00:10:21 1100.00 ...
.. 2000­10­10 00:11:16 1192.00 ..

建筑IOT数据存储

项目id(projectId) 表号(meter) 功能号(funcid) 采集时间(receiveTime) 数据值(data) 是否高频(gaopin)
1101020001 67C8081 11101 20210601150948 23.9 TRUE
1101020001 67C8081 11201 20210601150948 26.6 FALSE
1101070037 1001 11 20010203040506 3.1 FALSE

3.1 时序数据分类

数据频率区分

(1)低频:采集频率比较低,几分钟一个数据,比如:有功电能、温湿度、CO2、CO等

(2)高频:采集频率比较高,几秒一个数据,比如:电流、电压、功率等

按照物理含义分类

(1)累积量 Accumulated quantity, abbr. Acc (Acc)

数值沿时间轴累计,连续性数值时变量。

例如:电耗,冷量,热量,水耗,燃气量,蒸汽量等,以及可以转化为此类特性的参数,如缴费剩余金额值等

(2)瞬时量 Instantaneous quantity, abbr. Inst (Inst)

数值沿时间轴连续变化的时变量,在物理意义上常表现为累积量的一阶导数。

例如:温度,压力,CO2浓度,电流,功率等

(3)状态量 Enumerate variable quantity, abbr. Enumv(Enumv)

延连续时间轴只有给定整数数值状态的时变量。

例如:冷却塔风机档位(0. 停,1. 低,2. 高),风机盘管风机档位(0. 停,1. 低,2. 中,3. 高)等

(4)通断变量 Boolean variable quantity, abbr. Boolv (Boolv)

延连续时间轴只有0/1两种数值状态的时变量。

例如:设备开关状态,系统报警状态,手自动状态等

(5)阶跃变量(Step)

(6)瞬时累计量(InAc)

(7)累计瞬时量(AcIn)

(8)文本类型

状态量的特殊情况,直接保存,不参与分精度计算

按照时间连续性分类

(1)连续变量 连续量,continuous quantity,abbr. Contu

数据对应固定的时间轴,即时间间隔固定,或相对固定。

例如:连续采集的数据,分精度数据。

(2)脉冲变量

脉冲量,pulse quantity,abbr. Pulse

随时间偶发性产生数据,时变量间的时间间隔没有规律,也不对应固定间隔的时间轴。

例如:报警消息,控制开指令,控制关指令等。

3.2 分精度数据库设定

  • 分精度数据是系统中给定的规范时间步长的时序变量数据;

  • 分精度数据库按照功能划分为操作数据库(OperationDB),修补数据库(AutorepairDB,ManurepairDB)和关联数据库(RelativeDB);

  • 三类数据库之间的关系如下

  • 根据原始数据的采集周期,确定相对应操作数据库的分精度步长,即每个参数都对应一个采集属性CollectProperty = {(Contu,T ) / Pulse}.

  • 系统暂时只处理低频采集数据,对于采集频率<1min的高频数据,系统不会长期保存原始数据,分精度数据按照低频数据的标准统一处理

  • 采集周期无论长短,系统都会提供分精度处理。当采集周期较长时,系统提供的短周期分精度数据不能保障其有效性。即根据采集属性参数的情况,关联数据库中,有些库ProtectFlag = 1(1.不保障;0.保障)

下表标记说明:1)黑体加粗字,蓝色框,为操作数据库;2)其余均为相关数据库;3)橙色框,为不保障数据库。